1. Department of Artificial Intelligence, Xiamen University, China

Multi-label Feature Selection via Global Relevance and

2. School of Mathematical Sciences, Xiamen University, China

Redundancy Optimization
Jia Zhang?!, Yidong Lin?, Min Jiang?!, Shaozi Li!, Yong Tang3, Kay Chen Tan*

Approach

we propose a new multi-label feature selection
method via global relevance and redundancy
optimization, named GRRO. In addition, we also give
an extension of GRRO to conduct feature selection
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have
attracted a great attention in recent years, and
gained promising results to deal with multi-label

Information theoretical based methods

method with label-specific features. Empirical
studies on twenty multi-label data sets reveal the
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features are specified as the label-specific features
with respect to the corresponding label. Thus, we
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effectiveness and efficiency of the proposed update the weight matrix with the weight information u=1j=1
method. of label-specific features, thus achieving the purpose. | IR o —_———— -
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